翻訳と辞書 |
Symmetric obstruction theory : ウィキペディア英語版 | Symmetric obstruction theory
In mathematics, a symmetric obstruction theory, introduced by Kai Behrend, is a perfect obstruction theory together with nondegenerate symmetric bilinear form. Example: Let ''f'' be a regular function on a smooth variety (or stack). Then the set of critical points of ''f'' carries a symmetric obstruction theory in a canonical way. Example: Let ''M'' be a complex symplectic manifold. Then the (scheme-theoretic) intersection of Lagrangian submanifolds of ''M'' carries a canonical symmetric obstruction theory. == References ==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Symmetric obstruction theory」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|